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In this article we consider the linear regression model y = Xf + e,
where ¢ is N(0, ¢%I). In this context we derive exact tests of the form
H: RB = rversus K: f € RX for the case in which 42 is unknown. We
extend these results to consider hypothesis tests of the form H: R, =
r and R,8 = r, versus K: f € RX, For each of these hypotheses tests
we derive several equivalent forms of the test statistics using the duality
theory of the quadratic programming. For both tests we derive their
exact distribution as a weighted sum of Snedecor’s F distributions nor-
malized by the numerator degrees of freedom of each F distribution of
the sum. A methodology for computing critical values as well as prob-
ability values for the tests is discussed.

The relationship between this testing framework and the multivariate
one-sided hypothesis testing literature is also discussed. In this context
we show that for any size of the hypothesis test H: Rf = r versus K: f
€ RX the test statistic and critical value obtained are the same as those
from the hypothesis test H: A = 0 versus K: A = 0, where A is the
expectation of the Lagrange multiplier arising from the estimation of
subject to the equality constraints RS = r. In this way we link the
multivariate inequality constraints test to the much studied multivariate
one-sided hypothesis test, H: 4 = 0 versus K: u = 0, where x is the
mean of a multivariate normal random vector. We also show that the
test H: Ri8 = r, and R,f = r, versus K: B € RX has the following
equivalent test in terms of A, H: A = 0 versus K: 4, = 0, and 4, # 0,
where 4, is the subvector of A corresponding to R, = r; and A, corre-
sponds to R, = r,. Extensions of recent work in one-sided hypothesis
testing for the coefficients of the linear regression model are also derived.
For the normal linear regression model we derive exact tests for the
hypothesis testing problems H: Rf = r versus K: Rf = rand H: Rf =
rversus K: R, = r, and R, # r,.

KEY WORDS: Hypothesis testing; Multivariate one-sided tests; Order-
restricted inference; Applications of duality theory.

1. INTRODUCTION

Tests for multivariate inequality constraints and combi-
nations of multivariate inequality and equality constraints
should have wide application in applied research. For ex-
ample, in econometric modeling, economic theory often
supplies the researcher with a priori information about
some or all of the signs of the parameters of the regression,
as well as information as to whether a coefficient or sum
of coefficients is zero or not. In other cases economic
theory provides information about only the signs of several
linear combinations of the parameters. Conventional two-
sided multivariate tests are not designed to test these null
hypotheses implied by economic theory. The tests pro-
posed here are explicitly designed for these purposes. Pos-
sible applications of a multivariate inequality constraints
testing procedure are not confined to econometrics. In
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general, these testing procedures offer the researcher a
way to statistically test a priori beliefs about the signs of
regressions coefficients.

The comparison of a priori knowledge with the empir-
ically estimated model is a specific example of a commonly
performed ad hoc procedure. In this procedure the applied
researcher has many variables that are believed to influ-
ence the dependent variable of the model and, for several
of them, a strong belief about the sign of the parameter
associated with that variable. In practice, the researcher
runs the unconstrained model with all of the variables
believed to influence the dependent variable included.
Based on the signs of the estimated parameters of the
model, one of the variables associated with an incorrectly
signed parameter is deleted from the equation and the
model is reestimated. If this new estimated equation has
any incorrectly signed coefficients, then one of the cor-
responding variables is removed from the regression and
the model is again reestimated. This procedure is repeated
until all of the variables left in the equation about which
the researcher has a priori beliefs have correctly signed
estimated coefficients. A multivariate inequality con-
straints test allows the researcher to assess, in a hypothesis-
testing framework, the validity of this ad hoc procedure
for deleting variables from the unrestricted model, that is,
whether or not the data is consistent with true values of
the parameters satisfying the sign restrictions imposed on
the estimated coefficients.

Yancey, Judge, and Bock (1981) discussed tests of the
null hypothesis that a subset of the parameter vector lies
in the positive orthant for the special case in which the
design matrix in the linear regression model is orthogonal
(X'X = I, the identity matrix), and the covariance matrix
of the disturbance vector is scalar [E(ee') = o¢?I]. Our
results generalize their results to the case of the arbitrary
design matrix and general equality and inequality con-
straints. The first generalization is essential to applying
this testing procedure, because the case of an orthogonal
design matrix rarely, if ever, occurs in empirical practice.

Robertson and Wegman (1978) tested order restrictions
as a null hypothesis within the context of the exponential
family of distributions. They considered hypothesis tests
of the form H: u, = u, = -+ = ug versus an unrestricted
alternative. Dykstra and Robertson (1983) extended this
testing framework to cases in which a collection of inde-
pendent normal means is, in their words, decreasing on
the average. This allows reversals in the aforementioned
inequalities over short ranges of the y; (j = 1, . . . , K).
The general methodology these researchers used to cal-
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culate the null distribution of their likelihood ratio statistic
for testing order restrictions can be extended to our prob-
lem of testing multivariate inequality constraints.

Gourieroux, Holly, and Monfort (1982), hereafter re-
ferred to as GHM, within the context of the linear regres-
sion model, dealt with a problem falling in the general
class of multivariate one-sided hypothesis tests. They were
interested in testing the multivariate equality constraints
null hypothesis Rf = r against the restricted alternative
Rp = r. We are concerned with testing the null hypothesis
of the inequality constraints Rf = r versus an unrestricted
alternative.

The derivation of our test statistics relies heavily on the
duality theory of quadratic programming. An understand-
ing of the results of the multivariate one-sided hypothesis
testing literature is very helpful to understanding our re-
sults. Perlman (1969) provided an excellent summary of
this literature.

The outline of the article is as follows. In Section 2
we introduce the unconstrained, inequality-constrained,
equality-constrained, and mixed inequality- and equality-
constrained estimators of the linear regression model. Sec-
tion 3 contains the derivation of the two likelihood ratio
test statistics in their various forms. In Section 4 we take
two different tacks to show that the distribution of the test
statistics for the purposes of testing the null hypothesis is
a weighted sum of Snedecor’s F distributions, where en-
tering into each distribution in these sums is a scale factor
that is the numerator degrees of freedom of the F distri-
bution. In Section 5 we discuss the computation of the
critical value for each test statistic as well as a methodology
for computing probability values for our testing procedure.
In Section 6 we derive the conditions under which there
exists a small sample distribution for the GHM test sta-
tistics and also extend their testing framework to consider
two-sided equality constraints in conjunction with multi-
variate one-sided hypotheses. The Appendix gives the
available closed-form solutions for the weights used in
computing the null distribution.

2. THE THREE ESTIMATORS

Consider the linear regression model

y = XB + ¢, 2.1)

where y is a (T X 1) vector, X is a (T X K) matrix of
rank K, and fis a (K X 1) vector. We assume that ¢ is a
(T x 1) random vector that is N(0, ¢2I), where I is an
identity matrix of rank 7. We assume that ¢2 is unknown.

The matrix of constraints, R, is a (P X K) matrix of
rank P, where P = K. The inequality constraints are ex-
pressed as Rf = r, where r is a known (P X 1) vector.
We should note here that throughout the remainder of the
article, =, when applied to vectors, implies that = applies
for each element of the two vectors compared. We now
define the inequality-constrained estimator for the general
linear regression model.

The quadratic programming problem that yields the in-
equality-constrained least squares (ICLS) estimator is the
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following:

mbin(y - Xb)'(y — Xb) subject to Rb = r.
There are several methods by which this problem can be
solved. Gill, Murray, and Wright (1981) provided an ex-
cellent survey of these methods. We will write the solution
to this optimization problem as b. The (P X 1) vector of
Kuhn-Tucker multipliers for the constraints Rb = r is
represented by 4. The unconstrained estimator is the usual
ordinary least squares (OLS) estimator, which is b =
(X'X)~'X'y. For completeness, we associate with b a Kuhn-
Tucker multiplier 4, which is identically zero. We also find
it useful to consider the equality-constrained estimator that
is the solution to the following optimization problem:

min(y — Xb)'(y — Xb) subject to Rb = r.

b
We will denote the solution to this optimization problem
by b and its associated Lagrange multiplier by 4.

Using a derivation by Gourieroux et al. (1982) and Liew
(1976), it can be shown that all three of the estimators
satisfy the following equation:

b, = b + (X'X)"'R'A,/2, (2.2)

where n indexes the unconstrained, inequality-con-
strained, or equality-constrained estimator. Using this
equation for the inequality-constrained estimator yields
the following equation:

b - b= (X'X)"'R'I2, (2.3)

which will prove extremely useful in subsequent sections.
Using the relationship (2.2) for the equality-constrained
estimator yields the following:

Rb— Rb = r — Rb = R(X'X)"'R'7/2. (2.4)

This follows from the fact that Rb = r, by definition. This
implies that

2(R(X'X)"'R")"Y(r — Rb) = 7. (2.5)

We will find this relationship useful in later sections for
relating 7 to b.

We can also modify our inequality-constrained estimator
framework to consider the mixed inequality- and equality-
constrained estimator, which is defined as follows:

min(y — Xb)'(y — Xb)

subject to Rb=r, and Rb =r,, (2.6)

where R, is composed of the first L (L < P) rows of R
and R, is the remaining P — L rows of R. Correspondingly,
ry is the first L elements of r and r, is the remaining P —
L elements of r. Associated with the solution of this qua-
dratic program (QP) is a vector of multipliers /' = (4,

1), where 1, is associated with the inequality constraints
and is hence restricted to be greater than or equal to zero.
This is a Kuhn-Tucker multiplier. The subvector 1, is as-
sociated with the equality constraints and is hence unre-
stricted. This is a Lagrange multiplier. By b we will denote
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the solution to QP (2.6). For our mixed constraints esti-
mation problem (2.6), the equality-constrained form of
this problem is, by construction, the equality-constrained
problem considered previously. The unconstrained prob-
lem for this case is once again simply OLS estimation. It
can be verified that the equality (2.2) continues to hold
for the mixed constraints estimator and its associated vec-
tor of multipliers.

Note that all of the estimators and their associated Kuhn—
Tucker or Lagrange multipliers will be denoted throughout
the article by the symbols defined here.

3. DERIVATION OF TEST STATISTICS

For the regression model (2.1), we first derive the like-
lihood ratio test for the null hypothesis Rf = r. The ex-
tension to including equality constraints follows once we
have the framework for inequalities alone. Throughout
this discussion b will denote the maximum likelihood es-
timate (MLE) that is equivalent to the OLS estimate of
and b will denote the inequality-constrained MLE or ICLS
estimate, as these two estimates are also equivalent. The
Kuhn-Tucker multiplier will be denoted by 1. Consider
the likelihood ratio (LR) test, which is defined in the usual
fashion as

LR = —2In(L/L) = 2(In L — In L),

where L and L are the maximum values of the likelihood
function under the null hypothesis (Rf = r) and main-
tained hypothesis (8 € RX), respectively.

It follows that if o2 is known the LR statistic takes the
following form:
LR = [(y - Xb)'(y - Xb) — (y — Xb)'(y — Xb))/o™.
In addition, the LR statistic is also the optimal value of
the objective function from the following QP:

min[(y — Xb)'(y — Xb) = (y - Xb)'(y — Xb)]/a?

subject to Rb = r. (3.1)

This QP can be rewritten as follows:
min[y' X(X'X) X'y — 2y'Xb + b'X'Xb]/c?
b

subject to Rb = r. (3.2)

This form will prove useful later, but for the present it
puts (3.1) into the form of the standard QP:
mina + ¢'x + 3x'QOx

subject to Ax = b. (3.3)

The dual of this standard QP (3.3) can be written in the
following form:

max A'(b + AQ7'c) — 3/AQ7'A'A — $c'Q7Ic + a
i

subject to A = 0. (3.4)

See Luenberger (1969, chap. 8) or Avriel (1976, chap. 7)
for a discussion of the duality theory relevant to this con-
text. If we define problem (3.2) and its equivalent form
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(3.1) as the primal, then the dual of the optimization prob-
lem (3.1), using (3.3) and (3.4), is

max[A'(r — Rb) — $A’'R(X'X)"'R'1]/a>
i

subject to A = 0. (3.5)

We define the Kuhn-Tucker test statistic (KT) as the
optimal value of the dual problem, QP (3.5), which is

KT = VR(X'X)"'R'1/40>.

From the theory of quadratic programming we know that
the optimal value of the objective function of the primal
equals that same value for the dual problem, subject
to certain regularity conditions (Gill et al. 1981, p. 76).
Necessary conditions are that (X'X) is nonsingular and
R(X'X)"'R’ is positive definite. As both of these condi-
tions are true by assumption, we have KT = LR. The
following two statistics are also equivalent to the KT and
LR statistics:

W = (Rb — Rb)(R(X'X)"'R')"'(Rb — Rb)/c*

and

(3.6)

W = (b - by(X'X)(b — b)/o2. (3.7)

Equation (2.3) multiplied on both sides by R allows us to
show the equivalence of (3.6) to the KT statistic. Equation
(2.3) shows that (3.7) is equivalent to the KT statistic.
Both statistics (3.6) and (3.7) are a form of what we define
as a Wald statistic for testing multivariate inequality con-
straints. These statistics are so named for their resem-
blance to the Wald (1943) test for multivariate equality
constraints, because they are defined in a similar fashion,
as the magnitude of the difference between the unre-
stricted estimate and the restricted estimate evaluated in
the norm of the covariance matrix of the unrestricted es-
timate. The W statistic is also the optimal value of the
objective function from the following QP:

min(b — b)'(X'X)(b — b)/6>  subject to Rb = r.
b

(3.8)

This implies that b, the ICLS estimator, is also the value
of b that solves (3.8). To see this, expand the objective
function of (3.8) using the fact that 5 = (X'X)~'X'y and
note that the objective function of this problem is the same
as that from QP (3.2) and, therefore, QP (3.1). Hence, in
the case in which ¢? is known, the LR, KT, W, and W
forms of the likelihood ratio statistic for testing multivari-
ate inequality constraints are all equivalent. Therefore, it
is clear that all of these forms of the LR statistic possess
the same distribution. They will continue to possess the
same distribution if we use the same estimate of ¢ in their
computation when ¢? is unknown.

For our estimate of o2 we will use the standard unbiased
estimate, s%, written in the usual fashion as

s2=(y — Xb)'(y — Xb)/(T — K),  (3.9)
where b is the OLS estimate of 8. We know that s(T' —
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K)/ c*is distributed as a y%_ Krandom variable. In addition,
s2 is distributed independently of b;, for i = 1, , K.
Wilks (1962, chap. 10) provided a detailed dlscuss1on of
the sampling distribution results for the normal linear
regression model. The likelihood ratio statistic for the case
in which ¢ is unknown simply replaces ¢ with s* in its
LR, KT, W, and W forms calculated previously. Theil
(1971, pp. 141-145) showed that the classical F test for
multivariate equality constraints when ¢? is unknown may
be regarded as a likelihood ratio test for the equality con-
straints null hypothesis. Using similar logic, the LR, KT,
W, and W statistics can be shown to be equivalent forms
of the likelihood ratio statistic for multivariate inequality
constraints.

For the mixed hypothesis test, for the case in which o2
is known, the LR form of the likelihood ratio statistic is
the optimal value of the objective function from the fol-
lowing QP:

min[(y — Xb)'(y — Xb) — (y — Xb)'(y — Xb))/o?

subject to Rb =r, and Rb = r,. (3.10)

Using the duality theory discussed previously, it can be
rewritten in terms of the vector of Kuhn-Tucker and La-
grange multipliers as the optimal value of the objective
function from the following QP:

max[1'(r — Rb) — }A'R(X'X)"'RJ]/q?
y)

subject to 4, = 0, (3.11)

where A, is composed of the first L elements of A. The
elements of 4,, the remaining P — L elements of 4, are
unrestricted. The W and W forms of these test statistics
are exactly the same as (3.6) and (3.7) except that b is
replaced by b, where b is the solution to QP (3.10) as well
as QP (2.6). It follows that the KT form of the statistic is
the optimal value of the objective function of (3.11). By
the same logic used for the case of the inequality con-
straints alone, the optimal objective function value of (3.10)
equals that from (3.11). Using (2.2) for b and 1, we can
also show that the W, W, KT, and LR forms of the like-
lihood ratio statistic are all equivalent for this case as well.
To construct the various forms of our likelihood ratio sta-
tistic for the case that 2 is unknown we once again use
the estimate s? given in (3.9) in place of 2.

4. DISTRIBUTION OF TEST STATISTICS UNDER
NULL HYPOTHESIS

We first consider the case of only inequality constraints.
The derivation of the distribution of our test statistic under
the null hypothesis is complicated by the fact that our null
hypothesis does not specify a unique value for f. It only
requires that £ satisfy a system of linear inequalities. How-
ever, a monotonicity property of the power function of
the test and the results of the multivariate one-sided hy-
pothesis testing literature allow us to derive the null dis-
tribution of our test statistic for the least favorable con-

785

figuration (and, therefore, any size test) of our null
hypothesis.

Before proceeding with the derivation of the null dis-
tribution of our test statistic we first summarize the results
of the multivariate one-sided hypothesis testing literature
and modify them slightly to fit our framework. This lit-
erature deals with the following hypothesis testing prob-
lem:

H: ¢ =0versusK: £ =0, ¢ €RP,
E=¢+, nis a (P x 1) vector that is N(0, 6?A).
4.1)

We assume that A is of full rank P, positive definite, and
known. For the moment we will assume that ¢? is also
known. This hypothesis testing problem has a long history
in the mathematical statistics literature. Bartholomew
(1959a,b, 1961) considered a related problem of testing
order restrictions between independent normal means.
Kudo (1963) extended Bartholomew’s results to the spe-
cific case considered in (4.1). At around this same time
Nuesch (1966) also treated this problem. Perlman (1969)
dealt with (4.1) as well as several other problems within
the general class of one-sided multivariate hypothesis tests.
Perlman considered both null and alternative hypotheses
where the mean vector of a multivariate normal random
vector lies in a positive homogenous set. We will use the
approach of Perlman (1969), as it is the most general of
all approaches presented.

Perlman formulated the likelihood ratio test for (4.1) as
the maximum value of the objective function from the
following QP:

m?X[Z’A*E - (& - &)yAE - O)le?

subject to & = 0. (4.1a)

Intuitively, this statistic is the difference between two dis-
tances: the distance between the unconstrained estimate
of £, which we have defined prev10usly as &, and its null
value of & (which by hypothesis is zero) and the distance
between the unconstrained estimate and the positive or-
thant. All distances are defined in the norm of the covari-
ance matrix, 6?A. Let & be the value of ¢ that satisfies
(4.1a). Define the following statistic:

= [E'A71E - (€ - &Y€ - ©))/e?
= EAiE/on
From Perlman (1969) we have the following:

Theorem 4.1. Under the null hypothesis H: £ = 0, the
distribution of the LR statistic U for any ¢ > 0 is

P
Pro,a[U =] = D, Pr[y} = c]w(P, k, A).
k=1

Pry,u[U = 0] = w(P, 0, A).

Proof. See Kudo (1963), Nuesch (1966), or Perlman
(1969).
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The notation Pr,,,[U = c] denotes the probability of
the event [U = c] assuming ¢ is normally distributed with
mean 0 and covariance matrix ¢?A. This notation will be
used throughout the remainder of the article. The distri-
bution of U is weighted sum of chi-squared distributions
ranging from zero to P df. Note that a y3 for k = 0 is
simply a point mass at the origin. Hence for any ¢ > 0,
Pr(x%4 = ¢) = 0. Thus if we want the null distribution for
all ¢ = 0 the summation can begin at k = 0. The role of
the ¥ random variable will become clear in the calculation
of the critical value for our testing problem. The sum of
the weights, w(P, k, A), from k = 0 to P is 1. These
weights, as noted previously, depend explicitly on A and
are the probability that the P-dimensional vector é has
exactly k positive elements.

Closed-form solutions for the weights are available for
the cases in which P = 4 (Kudo 1963). Shapiro (1985)
provided alternative closed-form expressions for these
weights for the case in which P = 4. In the Appendix
these expressions are reproduced using our notation. Var-
ious numerical methods are available for the cases in which
P = 5. Bohrer and Chow (1978) gave an algorithm that
is designed to calculate these weights up to the case in
which P = 10. Siskind (1976) computed a Taylor expan-
sion of the null distribution of the test statistic for Bar-
tholomew’s (1959a,b) hypothesis test for cases in which
P > 4 and, therefore, avoided the numerical methods
necessary to compute the weights and critical values for
this testing procedure. Unfortunately, his technique is not
straightforward to apply to general problems and it only
applies to the cases in which P = 7. _

For some special cases of the covariance matrix of &,
Robertson and Wright (1983) gave approximations for the
weights used in the computation of the null distribu-
tion for Bartholomew’s ordered means hypothesis-testing
problem for various configurations of the relative mag-
nitudes of the weights. This discussion of the weights shows
that their computation is a major stumbling block to the
widespread application, to higher-dimensional problems
(P = 8), of this testing framework.

A final methodology for computing these weights for
the cases in which P = 8 is to use Monte Carlo techniques.
Here the researcher takes, say 1,000 draws from a mul-
tivariate normal distribution with mean zero and covari-
ance matrix A. For each draw he computes & and counts
the number of elements of the vector greater than zero.
In this case w(P, k, A) is computed as the proportion of
the 1,000 draws in which & has exactly k elements greater
than zero. This technique has the following advantages.
No expensive numerical integration techniques are re-
quired. There are no limits on the values of P for which
it is applicable. Because it is a Monte Carlo technique,
however, the resulting weights are not exact. Preliminary
comparisons of this technique with exact techniques are
very encouraging in terms of the degree of agreement with
the exact procedure.

Before considering the null distribution of our test sta-
tistics from Section 3, we extend Perlman’s results for
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conditions closely related to our testing problem. Suppose
that all of the assumptions of the hypothesis-testing prob-
lem (4.1) continue to hold except that ¢? is unknown. In
addition, suppose that their exists an unbiased estimate of
2, s2, which is independent of &, such that s?v/g? is dis-
tributed as a chi-squared random variable with v df. Using
this estimate of ¢2, our test statistic becomes

U* = E'A1E/s2, 4.2)

As shown previously, the numerator of U* is a mixture
of chi-squared random variables, which are all indepen-
dent of s?. Note that s?/¢? is a chi-squared random variable
divided by its degrees of freedom. By definition, the ratio
of two independent chi-squared random variables divided
by their respective degrees of freedom is distributed with
Snedecor’s F distribution, with its two parameters the de-
grees of freedom of the numerator and denominator chi-
squared random variables. Using this definition we state
the null distribution of U* in the form of a corollary whose
proof follows from that of Theorem 4.1.

Corollary 4.1. Consider the case in which ¢? is un-
known but there exists an unbiased estimate of it distrib-
uted independently of ¢ such that s?v/6? is distributed as
x%. Under the null hypothesis H: ¢ = 0, the distribution
of the modified LR statistic U* is, for all ¢* > 0,

P
Pry[U* = ¢*] = D Pi[F,, = c*/klw(P, k, A),
k=1

PI'O’,,ZA[U* = 0] = W(P, 0, A)

Note that the null distribution of U* depends only on the
elements of A, which are assumed to be known parame-
ters. We are now able to proceed with the derivation of
the null distribution of our LR statistic for the case that
62 is unknown.

To do this we first consider the following testing prob-
lem:

H:u=0 versus K:u € R?, A=u+v,

vis a (P X 1) vector that is N(0, 62Q2). (4.3)

We assume that ) is of full rank P and known. For the
moment assume that ¢? is also known. For this problem
our sample space in the Neyman-Pearson framework is ©
= R”. The positive orthant and its boundary in P-dimen-
sional space is the subset of ® in which x lies under the
null hypothesis. We denote this by @, and its relative
complement under O is denoted by @. Following Leh-
mann (1959), let s be the test statistic for our hypothesis
test and S the rejection region. If

sup Pr, (s € S) = a,
HEBOH

then § is the rejection region for a size « test of our null
hypothesis. We will now show how to construct a rejection
region for a level « test of our testing problem (4.3).

In Perlman (1969) a related form of this hypothesis-
testing problem was considered. Using Perlman’s logic,
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the LR test for this problem is the minimum value of the
objective function from the following QP:

min(4 — u)'Q (4 — u)/6®>  subject to u = 0.
U

Denote by # the solution to this QP. Define
Z=(a-paia- e (4.4)

A special case of lemma 8.2 in Perlman (1969) is given
below.

Lemma 4.1.
is true:

For any 4 = 0 and ¢ € R, the following

Pr,20[Z = c] = Pro3[Z = c].

Proof. See Perlman (1969, pp. 562-563). Note that this
lemma continues to hold for the case in which ¢? is un-
known and is replaced by an estimate of it that is inde-
pendent of the numerator of (4.4) in the computation of
the statistic Z.

As an immediate corollary we have

sup Pr, ol Z = ¢] = ProgulZ = cl.
HEOH

We now have identified the unique least favorable value
of u to specify in order to compute the null distribution
for a size « test of our composite null hypothesis. This
monotonicity property gives results similar to those for the
univariate inequality-constraint test. In that case the least
favorable value of the mean of a normal random variable
is zero for a test of the null hypothesis that this mean is
greater than or equal to zero. We should note here that
Lemma 4.1 and its corollary continue to hold for any @,
that takes the form of a convex cone.

We state the distribution under the null hypothesis of
our test statistic (4.4) in the form of a theorem whose
proof is given in Wolak (1987).

Theorem 4.2. Under the null hypothesis 4 = 0 the
distribution of the likelihood ratio statistic Z has the fol-
lowing property for all ¢ > 0:

sup Pr, ,2[Z = c] = Pry2[Z = ]
HEB®H

P
= 2 Pr[x} = c]w(P, P — k, Q),
k=1
sup Pr”’UZQ[Z = 0] = PrO,azﬂ[Z = 0] = W(P, P, Q).
HEOH

The weights, w(P, m, (), are of the same functional form
as those calculated for the multivariate one-sided testing
problem described previously.

If we are faced with a case in which ¢? is unknown but
we have an unbiased estimate of it that is distributed in-
dependently of /i, we can then apply the same logic used
to get Corollary 4.1 from Theorem 4.1 to Theorem 4.2.
Let

zZ* = (- p'Q N4 - p)is?
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be the modified LR statistic for our inequality-constraints
test.

Corollary 4.2. Consider the case in which ¢? is un-
known but there exists an unbiased estimate of it distrib-
uted independently of /i such that s?v/g? (where s? is the
unbiased estimate of ¢2) is distributed as y2. The distri-
bution of the modified LR statistic Z* has the following
property for all ¢* > 0:

sup Pr, 20[Z* = c*]
HEBH
= PrO,azﬂ[Z* = C*]
P
= > Pr[F, = c*/k]w(P, P — k, Q),
k=1
sup Pr, 20[Z* = 0] = Pry,2[Z* = 0]
HEOH

= w(P, P, Q).

Consider the following special case of our problem (4.3)
where we define
U =:I?ﬁ -7 ﬁ = IQB - r

and Q = R(X'X)"'R'. (4.5)

As stated in Section 3, we use s = (y — Xb)'(y — Xb)/
(T — K) as our estimate of 62 used in the computation of
the LR statistic. In this case our test statistic is

mﬂin(ﬂ - W' [RX'X)T'R M4 — w)ls®

subject to . = 0. (4.6)
Using (3.4) note that the dual of (4.6) is
max[—A'2 — A'R(X'X)'R'A)/s*
A

subjectto A = 0. (4.7)

By definition —4 = r — Rb; therefore, we can rewrite
(4.7) as

max['(r — Rb) — 3A'R(X'X) 'R’ A)/s*
A

subject to A = 0. (4.8)

Recall the W form of the likelihood ratio statistic that was
defined as the optimal value of (3.8). Using (3.4) we can
show that the dual of (3.8) is also

max[A'(r — Rb) — 3A'R(X'X) 'R'})/s?
i

subject to A = 0. (4.9)

Because the duals of (3.8) and (4.6) are exactly the same
optimization problem the optimal objective function val-
ues of (3.8) and (4.6) are equivalent. In addition, because
the Kuhn-Tucker multipliers from (3.8) and (4.6) are
equivalent we know that the solution to (4.6) is 4 = Rb
— r, where b is the solution to (3.8) as well as the ICLS
estimator. Thus our test statistic Z* and the four forms of
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the likelihood ratio statistic considered in Section 3 are
equivalent. Hence their distribution under the null hy-
pothesis Rf = r is equivalent to the null distribution of
Z*. This distribution is a weighted sum of F distributions
as given in Corollary 4.2.

Theorem 4.3. For the case in which ¢? is unknown but
replaced by s2, under the null hypothesis Rf = r the dis-
tribution of LR, the likelihood ratio statistic, has the fol-
lowing property for all ¢ > 0:

sup Pry 2 x'x-[LR = ]
Rp=r

= Prﬂ* UZ(X’X)—I[LR = C]

~

= > Pr[Fr_x = c/klw(P, P — k, A),

k=1

i?p Prﬂ’,,Z(X’X)'l[LR = 0] = Prﬂs’GZ(X'X)-I[LR = 0]

w(P, P, A),

where f* is any value of f such that Rf* = rand A =
[R(X"X)"'R'].

Proof. Given the distributional properties of s2 and b,
this result follows directly from corollary 4.3 of Wolak
(1987).

To relate our testing problem to the multivariate one-
sided hypothesis test, we now consider our testing problem
in terms of the vector of dual variables. Recall that, as
shown in Theorem 4.3, we choose a least favorable value
of f such that Rf = r for any size test of our null hy-
pothesis. This implies that for this value of § the vector
of multipliers_ arising from the equality-constrained esti-
mation of 8, 4 is N(0, 46 [R(X'X)"'R']™}).

Before proceeding we define some notation. Let ¥ = r
— Rb. Recall the dual of QP (3.1), QP (3.5), which was
used to calculate the KT form of the LR statistic. Written
using our new notation it becomes

max[A'? — A'R(X'X)"'R'A)/s*  subjectto A = 0.
A

(4.10)

We can complete the square of this objective function by
adding and subtracting ?'(R(X'X)"'R’')"¥/s? into it. We
can rewrite (4.10) as follows:

max — [(4 ~ 2(R(X'X)"'R) ) R(X'X)"'R,

(A — 2(R(X'X)"'R") ") J/4s*+ ?'(R(X'X)'R") " 1¥ls?
subject to 4 = 0. (4.11)
Recall Equation (2.5). From that we note that
2 =2(R(X'X)"'R")™%
This allows us to show the following equivalence:

T'R(X'X)"'R'7/4 = ¥'(R(X'X)"'R)™%. (4.12)
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Using (2.5) and (4.12) we can rewrite (4.10) as
max 1'(R(X'X)"'R’) /45
A

- (A = ) (R(X'X)"'R)(A — A)/4s*
subject to 4 = 0. (4.13)

If we replace ¢ by A and A by 4(R(X'X)'R’)"!, then
the problem (4.13) is exactly the same as problem (4.1a)
for the case in which ¢? is unknown but estimated by s
Hence our statistic U* from the hypothesis-testing prob-
lem (4.1) is equal to the four equivalent forms of the LR
statistic derived in Section 3. The solution to QP (4.13) is
/, the KT multiplier vector defined in Section 2. Using
the dual approach to the multivariate inequality-con-
straints test we can derive the null distribution by an ap-
plication of the results of the multivariate one-sided hy-
pothesis test. Because Rf = r for the purposes of computing
the null distribution for any size test of our inequality-
constraints null hypothesis, this test procedure results in
the same critical value as the test in terms of the dual
variables of the null hypothesis that the true value of the
Lagrange multiplier is zero versus the restricted alterna-
tive that it is greater than or equal to zero. The true value
of the Lagrange multiplier, 4, is the expectation of . Tak-
ing the expectation of both sides of (2.5) yields A =
2(R(X'X)"'R")~!(r — Rp), so Ais in fact defined in terms
of B as well as being the expected value of A. Recall s?,
our unbiased estimate of ¢2. From the results of normal
linear regression theory, s* is independent of b and also
7, as 4 is N(O, 40’[R(X'X)~'R']"") and by (2. 5) equal to
a known matrix times b. Thus our estimate of ¢ satisfies
the requirement of Corollary 4.1. We summarize our result
about the null distribution of our LR statistics with s* as
our estimate of ¢? in the following theorem.

Theorem 4.4. For the hypothesis-testing problem H:

A = O versus K: 4 = 0 (which by Lemma 4.1 is equivalent

to, for the purpose of computing critical values for any

size test, the testing problem H: Rf = r versus K: ﬂ €

RX), the null distribution of the LR statistic with a? re-
placed by s> = (y — Xb)'(y — Xb)(T - K) is

Prosu[LR = ¢*]

= z Pr[Fk’T_K = C*/k]W(P, k, 4A),
k=1

PI'OAGZA[LR = 0] =
where A = (R(X'X)"'R")".

w(P, 0, 4A),

Note that the weights in Theorem 4.3 depend on P —
k and [R(X'X) 'R’'] and those in Theorem 4.4 depend on
k and 4[R(X'X)'R']"'. Wolak (1987) showed that w(P,
k,T) = w(P,P — k,bI'"!), b > 0for k = 0to P. Hence
the two null distributions in Theorem 4.3 and Theorem
4.4 are the same weighted sum of F distributions. Thus by
either the primal or dual methodology we can show the
same distribution for our test statistic for any size test of
our null hypothesis.

We will now consider the null distribution of our mixed
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equality- and inequality-constraints test statistics. We can
construct the null distribution of the mixed constraints test
statistics in terms of the vector of multipliers using the
same logic used to construct the null distribution of the
inequality-constraints LR statistics. Recall our mixed con-
straints hypothesis-testing problem:

H:RfB=r, and R, =r, versus K:p € RK
(4.14)

By applying Lemma 4.1 in the same fashion as it is used
in Theorem 4.3 to the inequality constraints R, = r;, we
know that for the purposes of testing our null hypothesis
we choose a f such that R, = r, as well as R, = r,. This
implies that in terms of A, the expected value of 4, fol-
lowing the logic of Theorem 4.4, the equivalent dual test-
ing problem takes the following form:

H:1=0 versus K:1,=0, i=1,...,L=P;
A #0, i=L+1,...,P, (4.15)

where A = 1 + # and 5 is distributed as N(0, 452
(R(X'X)"'R’)"1). For the moment, we assume that ¢ is
known. For the inequality constraints, 4, is constrained to
be greater than or equal to zero with strict inequality for
at least one element under the alternative. This is a mul-
tivariate one-sided hypothesis test in terms of the 4; (i =
1, ..., L). For the equality constraints, 4; is uncon-
strained under the alternative. In other words, for the
equality constraints we are considering a two-sided or un-
restricted alternative for the A, = L + 1, ..., P).

Recall optimization problem (2.6), which defines the
mixed equality- and inequality-constrained estimator. By
following the logic used to derive Theorem 4.4 we can
show that the likelihood ratio statistic for the mixed con-
straint case is also the optimal value of the objective func-
tion from the following QP:

max A'(R(X'X)"'R")1 /40>
A

- (A= 2)'(R(X'X)'R")(A — A)/4a?
i=1,...,L. (4.16)

The remaining elements of A are unrestricted. Denote this
optimal objective function value by Y. This is the same
form of the LR test statistic Kudo (1963) derived for the
hypothesis-testing problem (4.15). Recall that 4, the La-
grange multiplier arising from the equality constrained
estimation procedure, is distributed as N(0, 402
(R(X'X)"'R")~1). Kudo also derived the null distribution
of the LR test statistic for the hypothesis-testing problem
(4.15). We state his result, which holds for our test statis-
tics, in the notation of our mixed equality- and inequality-
constraints testing framework in the following lemma.

subject to 4; = 0,

Lemma 4.2. For the hypothesis-testing problem (4.15),
under the null hypothesis H: 1 = 0, the LR test statistic
Y has the following distribution:

L
Pr(Y=c) = D> Pr(x3 L. = )w(L, k, V),
k=0
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where V¥ is the submatrix of (R(X'X)'R’)~! correspond-
ingtod, i =1,...,L).
Proof. See Kudo (1963).

To extend this result to the case in which ¢? is unknown
we note that 1 is independent of our estimate of 62, s2.
Thus if we substitute s? for ¢? in our test statistic (4.16)
and call this statistic Y* we have the following lemma.

Lemma 4.3. Consider the hypothesis-testing problem
H: 2 = Oversus A; = 0 and 4, # 0 (which by Lemma 4.1
is equivalent to, for any size test, the hypothesis test H:
R = r, and R, = r, versus K: f € RK). For the case
in which ¢? is unknown, by replacing it with s, we have
the following distribution, for the purpose of testing our
null hypothesis, of the statistic Y*:

Pr(Y* = d)
L
= 2 Pr[FP_L+k,T_K = d/(P - L + k)]W(L, k, ‘P),
k=0

where ¥ is the submatrix of (R(X'X) 'R’)"! correspond-
ingtod; i =1,...,L).

We can also consider the null distribution of the mixed
equality- and inequality-constraints test statistics in terms
of the primal problem by extending Theorem 4.3 and re-
calling that the appropriate monotonicity property of the
power function in § obtained from Lemma 4.1 continues
to hold in this case. Using this logic we have the following
lemma.

Lemma 4.4. For the hypothesis-testing problem H: R,f
=r, and R, = r, versus K: B € RX, in the case in which
o? is known but replaced by s?, the distribution of the LR
statistic Y* satisfies the following property:

sup Prﬁ,az(x'x)—l(Y* = d) = Prlg*’al(x’x)—l(Y* = d)
PEB

L
= 2 Pr{Fp_rixr-x = d/(P — L + k)]w(L, L — k, II),
k=0

where I is the covariance matrix of R;b divided by ¢ and
B* is any f such that Rf = r.

We define B as follows: B = {#| Rif = r; and R, =
7., B € RX}. We define b as the estimate of § calculated
assuming that R, = r,. We use the covariance matrix of
R;b in the computation of the weights because under our
null hypothesis the unrestricted estimate of g assumes that
R,B = r,. From Silvey (1970) the covariance matrix of b
divided by ¢? is

var(bh)lo? = (X'X)!
— (X'X)T'Ry(Ry(X'X)"'R;) 'Ry(X' X) 7.
This implies that
var(R,b)/a? = R(X'X) 'R}
— R(X'X) 'R)(Ry(X'X)"'R;) 'Ry(X'X)'R;.
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We have shown that 1, the equality-constrained estimate
of A; that value of A arising from the computation of an
estimate of § given the constraints R, = r, and R, = r,
(which means that R = r) has the following covariance
matrix:

var(1) = 46%(R(X'X)"'R')".
Recalling that

we can rewrite R(X'X) 'R’ as follows:

R(X'X)"'R, R(X'X)"'R}
R(X'X)"'R, RAX'X)"'R}|"

By the partitioned matrix inversion lemma (see Theil 1971,
p. 18) the element of (R(X'X)~'R')"! corresponding to
R(X'X)"'R| is

0 = (R(X'X)"'R|
~ Ri(X"X) ' Ry(R{X'X) 'R;) 'Ry(X'X) 'R}

Note that k[var(R;b)]! = Q, k > 0. Note in addition that
the weights of Lemma 4.4 depend on var(R,b)/g? and
those in Lemma 4.3 depend on Q. As shown in Wolak
(1987) and claimed here previously, w(J, m, A) = w(/J,
J — m,aA™") (a > 0). Hence the two weighted sums of
F distributions given in Lemmas 4.3 and 4.4 are exactly
the same. Our primal-dual relationship used to compute
the null distribution for the case of multiple inequality
constraints continues to hold for the case of combinations
of multiple inequality and equality constraints.

We now have the exact null distribution for both the
inequality-constraints test statistic and the mixed equality-
and inequality-constraints test statistic. We should note
here that these results hold for more general forms of the
covariance matrix of the errors than those of the form 1.
If the covariance matrix of ¢ is 6?A where A is known and
positive definite, then all of our small sample results con-
tinue to hold for both sets of test statistics modified ap-
propriately. Note that for the case in which L = 0 our
mixed inequality- and equality-constraints test reduces to
the standard multivariate equality-constraints test, the
well-known F test.

It is natural at this point to discuss the power of these
tests. For the case in which the matrix (X'X) = I, the
identity matrix, the null hypothesis is § = 0, and g € R?;
power calculations are reported in Yancey et al. (1982).
The power of this test, for testing our one-sided null hy-
pothesis, is at least as great in all cases as the two-sided
test, H: Rf = r versus K: Rf # r, because it takes into
account the fact in our case that 4 > 0 under the alter-
native. One would also expect the mixed inequality and
equality test statistic to have superior power properties for
mixed null hypotheses when compared with standard mul-
tivariate equality-constraints tests, for the same reason.
For a discussion of power for multivariate one-sided hy-
pothesis tests see Bartholomew (1961) and Barlow, Bar-
tholomew, Bremner, and Brunk (1972). Wolak (1987) dis-
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cussed the computation of the power function for the
multivariate inequality-constraints test. Goldberger (1986)
provided an excellent study of the comparative power
properties of multivariate one-sided and inequality-con-
straints tests.

At this point we should also note some of the properties
possessed by our test. As stated in Perlman (1969) for all
testing problems of this class, the power of the test ap-
proaches 1 uniformly in ¢ and g as the distance, in the
norm of the covariance matrix of b, between f and where
it lies under the null hypothesis tends to infinity. The tests
are not unbiased. The least favorable distribution is ob-
tained at a f§ such that Rf = r. The power is smaller for
values of f elsewhere in the region defined by the null
hypothesis. By continuity of the power function of the test
statistic, there are values of § not in the region defined by
the null hypothesis where the power is smaller than when
B is such that R = r. Nevertheless, our tests are consis-
tent. For values of B such that RS & r the power of our
test approaches 1 as T tends to infinity.

5. APPLYING TEST STATISTICS

Because both test statistics have a null distribution that
is a weighted sum of F distributions, the calculation of the
critical value for a hypothesis-testing problem no longer
is as simple as looking up the relevant number in the tables
of quantiles of the F distribution. The widespread avail-
ability, however, of FORTRAN subroutine libraries, such
as the IMSL library (International Mathematical and Sta-
tistical Libraries, Inc. 1982), make the task substantially
easier.

For the level « test in the pure inequality-constraints
case the critical value is the solution in x of the following
equation:

P
a = Y Pr[Fyrx =xlklw(P, P — k, E), (5.1)
k=1

where E = (R(X'X)~'R’) in our notation. This problem
can be solved by any method for finding the zeros of a
univariate function. The IMSL library has several such
codes available for this purpose.

For the level « test in the mixed equality- and inequality-
constraints case the critical value is the solution in x of

L
a = z Pr[FP—L+k,T—k = X/(P - L + k)]
k=0

x w(L, L — k, II), (5.2)

where II is as defined in Lemma 4.4. This problem also
involves finding zeros of a univariate function.

There is another methodology that can be used in cases
in which the IMSL library or other such subroutine li-
braries are unavailable. In this case we calculate the prob-
ability of getting a value greater than or equal to the like-
lihood ratio statistic from a random variable with the null
distribution of our test statistic. If G(x) is the distribution
of our test statistic under the null hypothesis and LR is
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our test statistic, we calculate 1 — G(LR) as follows for
the inequality-constrained case:

P
1 — G(LR) = > Pr[F,r_x = LR/k]w(P, P — k, E).
k=1

For the mixed equality- and inequality-constrained case 1
- G(LR) is

L
1 - G(LR) = > Pr[Fp_p4r-x = LR/(P — L + k)]

k=0
x w(L, L — k, II).

In calculating these probabilities for the F distributions we
can either use numerical integration codes or interpolate
the relevant probabilities from available tables of the F
distribution. There are also various series expansions
methodologies for calculating these probabilities (see
Lackritz 1984). In this instance an investigator rejects the
null hypothesis if 1 — G(LR) < a, where « is the size of
the hypothesis test.

6. CONNECTIONS TO GHM AND MULTIVARIATE
ONE-SIDED TESTS

In this section we extend the framework of Gourieroux
et al. (1982) to consider hypotheses tests combining one-
sided and two-sided hypotheses. We also detail the con-
ditions on the covariance matrix of errors such that there
is a small sample, exact distribution for the various forms
of their test statistic.

As mentioned earlier, Gourieroux et al. were concerned
with the testing problem

H:RB=r

versus K:Rf=r,

with the inequality strict in at least one element, for the
linear regression model (2.1) with ¢ in our notation N(0,
2). Gourieroux et al. assumed that 2 is positive definite
and unknown. They derived three asymptotically equiv-
alent tests for their problem. If we assume that 2 takes
the form o?A where A is known and positive definite but
o? is unknown, we can derive the small sample null dis-
tribution for their test statistics. Replace ¢ in their sta-
tistics with s> = (y — Xb)'A~(y — Xb)/(T — K), which
is derived from the unconstrained generalized least squares
regression. Different from the results derived earlier for
testing multivariate inequality constraints, the modified
statistics presented in this section are not in the strict sense
LR statistics. As shown in Hillier (1986), for these statistics
to be considered LR statistics the estimate of o2 used in
their computation would have to be based on the estimate
of # derived under the alternative hypothesis as opposed
to the unrestricted estimate of f. It is unclear, however,
whether or not the use of s? as an estimate of ¢2 in com-
puting the test statistic will result in a test with power
properties inferior to those of the likelihood ratio test.
Proceeding under this caveat, the LR form of the test
statistic for their problem in this case is the maximum value

™
of the objective function from the following QP:
max — (y — Xb)'A(y — Xb)/s?
b
+ (y — Xb)'A~(y — Xb)/s?
subject to Rb = r, (6.1)

where b is the equality-constrained estimate of B. The
solution to this QP is b, the ICLS estimator. The dual of
(6.1), the KT form of the GHM statistic, is in our notation:

min(1 — 2)'R(X'A~X)"'R'(1 — 2)/4s*
A

subject to A = 0. (6.2)

The LR form of their statistic can be rewritten as the
optimal value of the objective function from the following

QP:
max — (b — b)'(X'A"'X)(b — b)/s?
b

+ (- b)Y(X' A X)(b — b)/s?
subject to Rb = r.

The solution to this QP is b. The Wald forms of the statistic
for this case of the GHM hypothesis test replaces b by b
and b by b in Equations (3.6) and (3.7).

By a straightforward application of Corollary 4.1, the
modified GHM statistic, which we denote by LR, has the
following exact null distribution:

P
Pr(LR = ¢) = > Pr(F,r_x = clk)
k=1

x w(P, k, R(X'A-1X)"'R"),
Pr(LR = 0) = w(P, 0, R(X'A"'X)"'R).

We can also extend the GHM framework to consider
two-sided hypotheses in conjunction with their one-sided
hypothesis for the same covariance matrix structure for
the errors, as was assumed previously. We are now inter-
ested in the following hypothesis-testing problem:

H:Rf =r K:Rf=r and R)f#r,

where R, and R, are as defined in QP (2.6) and r is par-
titioned in the same manner. The LR form of the test
statistic for this hypothesis test is the optimal objective
function value from the following QP:

max — (y — Xb)'A~Y(y — Xb)/s?
b

versus

+ (y — Xb)'A~Y(y — Xb)Is?
subject to Rb = r;. (6.3)

The KT form of this statistic is the optimal value of the
objective function of the dual optimization problem,

min(A — 1)'R(X'A"'X)"'R'(A — 1)/4s*
A

subjectto 4;, =0 and 4, =0, (6.4)

where 4, corresponds to the one-sided equality constraints
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and 4, corresponds to the two-sided equality constraints.
The Wald form of the statistic for this mixed hypothesis
test replaces b by the optimal value of b from QP (6.3)
and b by b in Equations (3.6) and (3.7). The four forms
of the combination one-sided and two-sided statistic are
all equivalent by the same logic as given previously. By
LR* we denote the optimal objective function value of
(6.3), which by duality theory is equal to the optimal ob-
jective function value of (6.4). The null distribution of
LR* is

Pr(LR* = ¢)
L
= > Pr{Fp pirx=c/(P — L + k)WL, k, T),
k=0

where I' = R{(X'A'X)"'R;.

To calculate the critical values or probability values for
either the GHM statistic for small samples or the extended
GHM statistic with mixtures of one-sided and two-sided
tests we use the same procedure as described in Sec-
tion 5.

7. CONCLUSIONS AND EXTENSIONS

In this article we devised an exact, small sample meth-
odology for testing general linear inequality restrictions
within the context of the linear regression model. We ex-
tended these results to consider equality and inequality
restrictions. In addition we illustrated the relationship be-
tween our testing framework and the multivariate one-
sided hypothesis-testing literature. In the process we de-
rived the conditions under which the existing multivariate
one-sided hypothesis-testing framework for the linear
regression model derived by Gourieroux et al. has exact
distribution results, as opposed to asymptotic results. We
also extended this framework to consider both one-sided
and two-sided hypotheses jointly.

In Wolak (1986) a framework for testing multivariate
nonlinear inequality constraints in nonlinear models was
derived. This framework is also extended to enable testing
combinations of nonlinear inequality constraints. Asymp-
totic results for local [as defined in Wolak (1986)] in-
equality-constraints tests similar to the exact distribution
results of this article obtain, although several compli-
cations arise in the derivation of the results because of
the nonlinearity of the parameters in the constraints and
model.

APPENDIX: EXPRESSIONS FOR WEIGHTS

In this Appendix we give closed-form expressions for the
weights, w(P, k, 3), used in the computation of the null distri-
butions of our test statistics for dimensions of the multivariate
inequality constraints test ranging from 2 to 4. Wolak (1987) gave
an illustrative application of this testing technique to show how
it is actually implemented.

Using expressions derived by Kudo (1963) for P = 2 and 3
and Shapiro (1985) for P = 4, the weights, w(P, k, %), are given
here. For P = 2 we have

w(2, 0, 2) = in!arccos(py,), w(2,1,2) =1,
w(2,2,3) = § — $n ! arccos(py),
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where p;, is the correlation coefficient associated with the (2 X
2) covariance matrix 3. For P = 3 we have

w3,0,2) =% - w3, 2,3), w3,1,2) =% -w(3,3,3),
w(3, 2, %)
= {n~'(3n — arccos(py3) — arccos(pyz,) — arccos(px,)),
w(3, 3, 3)
= 4n~'(2n — arccos(py,) — arccos(p;;) — arccos(py)),

where p, is the ijth element of the correlation matrix associated
with the (3 X 3) covariance matrix 3. If X € RP is N(u, %),
then p;;, is the partial correlation between X, and X; holding X,
fixed. Finally for P = 4 we have

w(4,0,2) =3 — w4,4,3) — w4,2,32),

w4, 1,3) = §n! (—47: + > arccos(p,j,,‘)> s
i>y,j#k
w(4,2,2) =4n? 3 (arccos(p,))(n — arccos(pyy)),
i>1,k>1:k,l1#1,]
w(4,3,3) = §n! <87t - 2 arccos(p,j‘,‘)) .
i>y:0,j#k

The weight w(4, 4, 3) is the probability that X € R*, as defined
previously, has all positive elements. This probability can be
obtained by numerically integrating a multivariate normal dis-
tribution function. The notation p,,; is the partial correlation
coefficient between X, and X; holding X; and X; fixed. The re-
mainder of the notation is as defined previously for the case in
which P = 3. Anderson (1984, pp. 35-43) provided a detailed
discussion of the computation of the partial correlation coeffi-
cients for an arbitrary covariance matrix ..

We should note that for the case in which 3, = ¢?] the weights
exist in closed form for all P. They take the following form:

11P 1 p
w(P, k, 0¥) = 7 [k] = [P N k] = w(P, P — k, ¢?).
[Received April 1985. Revised January 1987.]
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